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Abstract—Brain imaging genetics studies the genetic basis of brain structures and functionalities via integrating genotypic data such

as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and

sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise

univariate analysis. MTL methods generally incorporate a few of QTs and could not select features from multiple QTs; while SCCA

methods typically employ one modality of QTs to study its association with SNPs. Both MTL and SCCA are computational expensive as

the number of SNPs increases. In this paper, we propose a novel multi-task SCCA (MTSCCA) method to identify bi-multivariate

associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by

different imaging modalities. MTSCCA enforces sparsity at the group level via the G2;1-norm, and jointly selects features across

multiple tasks for SNPs and QTs via the ‘2;1-norm. A fast optimization algorithm is proposed using the grouping information of SNPs.

Compared with conventional SCCA methods, MTSCCA obtains better correlation coefficients and canonical weights patterns. In

addition, MTSCCA runs very fast and easy-to-implement, indicating its potential power in genome-wide brain-wide imaging genetics.

Index Terms—Brain imaging genetics, sparse canonical correlation analysis, multi-task sparse canonical correlation analysis

Ç

1 INTRODUCTION

IMAGING genetics is an emerging and important topic
which integrates both the genetic factors and neuroim-

aging phenotypic measurements in brain science. This
integration research of combining diverse genetic and
genomic data is expected to uncover the genetic basis of
brain structures and functionalities, and further offers
new opportunities to interpret the causality of relation-
ships between genetic variations and brain disorders such
as the Alzheimer’s disease (AD) [1], [2]. Modern neuroim-
aging techniques, such as magnetic resonance imaging
(MRI) and positron-emission tomography (PET), image
the morphometry and metabolic processes of the brain
based on different techniques, and generate different
imaging data describing the brain from different
perspectives. These multi-modal imaging data provide
complementary information and have been demonstrated
to offer comprehensive understandings of the brain

structures, functionalities, and brain disorders [3]. More-
over, in biomedical studies, we usually face a huge size of
genotyping biomarkers such as the single nucleotide poly-
morphisms (SNPs), which is a type of high-resolution
markers in genome-wide association studies (GWAS).
Therefore, developing the fast and efficient GWAS-ori-
ented imaging genetics method which integrates multi-
modal imaging data simultaneously is of great importance
andmeaning.

The multivariate learning methods are very popular
in brain imaging genetics since both imaging data and
genetic data are multivariate. The multi-task learning
(MTL) techniques are of this kind and widely used in brain
imaging genetics [4], [5]. Generally, these methods choose
a few important imaging QTs relevant to their aim as
dependent variables and SNPs as independent variables.
Then joint effect of multi-locus genotype on few pheno-
types is studied. This paradigm can select SNPs that are
simultaneously relevant to the candidate brain pheno-
types. However, the brain is demonstrated to be comprised
of multiple regions. Then using only a small proportion of
them could be lack of power since they may lose important
information carried by cerebral components which are not
included.

Although a brain-wide MTL model can be used, they are
still insufficient since they cannot select relevant brain pheno-
types frommultiple brain cerebral components. Therefore, bi-
multivariate methods become more and more popular in
brain imaging genetics recently. Sparse canonical correlation
analysis (SCCA) is such a technique which usually identifies
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the relationship between two views of data with sparse out-
put induced by different regularization techniques [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15]. These two-view SCCAmeth-
ods have limited power since they only utilize one modal
imagingQTs. Givenmulti-modal imaging data, incorporating
them together could make use of the information carried by
different modalities and would be beneficial to uncover inter-
esting findings that using one modality cannot. Therefore,
jointly analyzing the relationship between all the imaging
phenotypes from different modalities and genetic factors via
one single integrative SCCA model is desirable and of great
interest. And this integrativemodel would be helpful to eluci-
date the sharedmechanism of genetic factors on the brain.

One possible solution is the multi-view SCCA modelling
which considers the pairwise relationship between all omics
data involved. This multi-view SCCA is a naive extension to
existing two-view SCCA models, and a three-view one has
been introduced in [13]. It learns only one single canonical
weight for genetic loci which is overstrict thus cannot make
full use of the complementary information embedded in dif-
ferent modalities of imaging phenotypes.

Using brain-wide imaging QTs from multiple modalities,
in this paper, we propose a Multi-Task learning based SCCA
(MTSCCA) framework [16], [17]which can study bi-multivar-
iate associations between these phenotypes and genotypes
simultaneously. MTSCCA treats each SNP and QT as a fea-
ture, and then models the association between each imaging
modality and SNPs as a learning task. Different from those
conventional SCCA, including both two-view and three-view
methods, MTSCCA learns one canonical weight matrix for
SNPs, inwhich each columnvector corresponds to one canon-
ical weight of one SCCA task. In contrast, only one canonical
weight vector is associated with each imaging modality. To
make the model practical, we take into consideration the
group structure such as the linkage disequilibrium (LD) [18]
in human genome via the group ‘2;1-norm (G2;1-norm) [5] reg-
ularization. The joint individual feature selection for genetic
and phenotypic markers is also taken into consideration via
an ‘2;1-norm constraint. In addition, we propose a fast and
efficient optimization algorithm which is guaranteed to con-
verge to a local optimum. We apply MTSCCA to a very large
real neuroimaging genetic data set from the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) [19] cohort with all
SNPs in the 19th chromosome and three different modalities
of imagingQTs included.We intend to reveal the associations
between these genetic markers and imaging phenotypes.
Experimental results show that, compared with both two-
view and multi-view SCCA methods, MTSCCA yields better
canonical correlation coefficients and canonical weights. It
also reports a compact set of SNPs and imaging QTs known
to be associated with AD. Moreover, MTSCCA runs very fast
and could be a powerful tool to genome-wide brain-wide bi-
multivariate association analysis.

2 METHODOLOGY

We denote scalars as italic letters, column vectors as bold-
face lowercase letters, and matrices as boldface capitals. For
X ¼ ðxijÞ, its ith row is denoted as xi and jth column is xj,
and Xi denotes the ith matrix. xk k2 denotes the euclidean

norm, Xk kF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j x

2
ij

q
denotes the Frobenius norm.

2.1 Background

Let Xi and wi, i ¼ 1; . . .; I, represent the data matrices and
the corresponding canonical weights, respectively. Further,
we use X1 load the SNP data, and those remaining Xk’s
ðk 6¼ 1Þ load the imaging QT data of each imaging modality
separately. Then the conventional SCCA is defined as

min
w1;...;wI

X
i < j

�w>
i X

>
i Xjwj

s:t: Xiwik k22 ¼ 1;V wið Þ � bi; i ¼ 1; . . .; I;

(1)

where V wið Þ is the penalty function to accommodate spar-
sity and thus can select those features of interest. Many pen-
alty functions have been studied in the literature such as
Lasso (‘1-norm function) [10], [13], [20], group Lasso [11]
and graphical Lasso [9], [12]. Conventionally, we call it two-
view SCCA (SCCA for short) when I ¼ 2, and most existing
studies fall into this category. Those methods using three or
more sets of data (I � 3) are called multi-view or multi-set
SCCA (mSCCA) [13]. The two-view SCCA only uses one
modality of imaging QTs to study the genetic influence on
brain functions or structures, and the mSCCA learns only
one canonical weight for genetic data which must be corre-
lated to all imaging QTs simultaneously.

2.2 MTSCCA

2.2.1 The MTSCCA Model

To distinguish from the notation in mSCCA, in this section,
we use X 2 Rn�p to represent the genetic data with n partici-
pants and p SNPs, and Yj 2 Rn�qðj ¼ 1; . . . ; cÞ to represent
the phenotype data with q imaging measurements, where c
is the number of imaging modalities (tasks). Let U 2 Rp�c

be the canonical weight matrix associated with X and
V 2 Rq�c be that associated with imaging QTs with each vj
corresponding to Yj, we propose the novel multi-task based
SCCAmodel as follows

min
uj;vj

X
j

�u>
j X

>Yjvj

s:t: Xuj

�� ��2
2
¼ 1; Yjvj

�� ��2
2
¼ 1;V Uð Þ � b1;V Vð Þ � b2; 8j:

(2)

Obviously, our model is distinct from those mCCA. First,
MTSCCA employs the multi-task framework which learns a
series of related SCCA tasks together. This simultaneous
learning has been empirically [21], [22] and theoretically
[21], [23] shown to improve performance dramatically com-
pared with learning each task independently [24]. Second,
our model learns a canonical weight matrix U for SNPs, in
which each column uj corresponds to an individual SCCA
task. This is helpful since it does not require a unique canon-
ical weight of SNPs to be associated with all modalities of
imaging QTs at the same time. Third, MTSCCA learns one
canonical weight corresponding to each imaging modality
separately, indicating that we do not need to calculate mul-
tiple canonical weights for a specific imaging modality. This
helps the model focus on the identification of markers from
the genetic data, indicating it is quite suitable for imaging
genetics analysis. Finally, our mode can be well scalable in
terms of both modeling and computation. According to
Eqs. (1) and (2), the number of tasks of MTSCCA equals the
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number of imaging modalities which implies a linear rela-
tionship; while that of mCCA increases quadratically as the
number of imaging modalities increase since it does a CCA
task between every pair of data sets, including the pairwise
SCCA among imaging modalities.

2.2.2 Group-Sparsity and Joint Individual Feature

Selection for SNPs

Since numerous SNPs inherently exhibit group structure in
the genome, a realistic modeling method should take this
information into consideration. In Eq. (2), a canonical
weight matrix is associated with SNPs, and thus the conven-
tional group Lasso which is used to penalize a vector cannot
be employed directly. To tackle this issue, we use the
G2;1-norm function [5] which is formulated as

Uk kG2;1
¼

XK
k¼1

Uk
�� ��

F
¼

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2gk

Xc

j¼1

u2
ij

vuut ; (3)

where the SNPs are partitioned into K groups G ¼ fgkgKk¼1.
This regularization penalizes the SNPs in the same group as
a whole and expects to estimate equal or similar coefficients
for them. According to [5], this penalty has two major mer-
its. First, it incorporates the group structural knowledge
into the model via packaging all SNPs in the same group
together. This makes the model practical because it is in
accordance with the genetic mechanism. Second, it penal-
izes the canonical weight coefficients of a group of variables
across all SCCA tasks jointly. This setup can mutually pro-
mote each individual task.

Although using G2;1-norm regularization is meaningful,
there is a lack of feature selection at individual level. For
those disease related SNPs, they could hardly be located in
the same group. Generally, within a specific group, an indi-
vidual variable could be relevant to the QTs and those
remaining ones could be irrelevant. Therefore, we also
model this via the ‘2;1-norm regularizationwhich is the Lasso
regularization adjusted formulti-task feature selection,

Uk k2;1 ¼
Xp
i¼1

ui
�� ��

2
¼

Xp
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

j¼1

u2ij

vuut : (4)

Using both G2;1-norm and ‘2;1-norm regularization,
MTSCCA can not only select features at the group level in
accordance with the biological knowledge, but also jointly
select feature at the individual level across all SCCA tasks.

2.2.3 Joint Individual Feature Selection Across

Different Imaging Modalities

Apart from the identification of risk genetic factors, identify-
ing the AD risk imaging biomarkers is also of great concern.
In this study, in addition to the canonical weight matrix for
SNPs, MTSCCA also learns one canonical weight for each
imaging modality. For a larger number of imaging features,
a non-sparse result without feature selection makes the
model complex and hard to interpret. Therefore, sparsity-
inducing regularization is necessary for those imaging bio-
markers too.

In the MTSCCA model, we use the ‘2;1-norm function on
the imaging QTs, i.e.,

Vk k2;1 ¼
Xq
i¼1

vi
�� ��

2
¼

Xq
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXc

j¼1

v2ij

vuut : (5)

At first glance this is similar to that used to jointly select
individual features for SNPs, but it is employed here based
on a different motivation. Although collected based on dif-
ferent imaging technologies, all modalities of imaging QTs
are measured from the same brain geography and have
been mapped onto the same brain atlas via the segmenta-
tion and registration. Thus it is reasonable to assume equal
or similar weights for those imaging QTs associated with
the same brain area but attributed to different modalities.
Therefore, the ‘2-norm imposed on vi penalizes those QTs
from the same brain area but different modalities together,
and then the ‘1-norm is utilized to select them jointly.

2.3 The Efficient Optimization Algorithm

Now we can write the MTSCCA with penalties explicitly
exhibited, i.e.,

min
uj;vj

Xc

j¼1

�u>
j X

>Yjvj

s:t: Xuj

�� ��2
2
¼ 1; Yjvj

�� ��2
2
¼ 1;

Uk kG2;1
� a; Uk k2;1� b1; Vk k2;1� b2; 8j:

(6)

In order to solve Eq. (6), we modify the loss function to

min
uj;vj

Xc

j¼1

Xuj � Yjvj
�� ��2

2

s:t: Xuj

�� ��2
2
¼ 1; Yjvj

�� ��2
2
¼ 1;

Uk kG2;1
� a; Uk k2;1 � b1; Vk k2;1 � b2; 8j;

(7)

which is equivalent to the original one since 8j, Xuj

�� ��2
2
¼ 1

and Yjvj
�� ��2

2
¼ 1. Then we write its Lagrangian

LðU;VÞ ¼
Xc

j¼1

Xuj � Yjvj
�� ��2

2
þ g1ð Xuj

�� ��2
2
�1Þ þ g2ð Yjvj

�� ��2
2
�1Þ

h i

þ bð Uk kG2;1
�aÞ þ �1ð Uk k2;1�b1Þ þ �2ð Vk k2;1�b2Þ;

(8)

where b, �1, �2, g1 and g2 are tuning parameters, and b, �1

and �2 are positive values which control the model sparsity.
By dropping the constants, we further have

LðU;VÞ ¼
Xc

j¼1

Xuj � Yjvj
�� ��2

2
þ g1 Xuj

�� ��2
2
þ g2 Yjvj

�� ��2
2

h i

þ b Uk kG2;1
þ �1 Uk k2;1 þ �2 Vk k2;1;

(9)

from the point of view of optimization.
This equation is difficult to solve since it is non-convex in

the loss function and non-smooth in penalty functions. For-
tunately, it is convex in U with V fixed. Moreover, this
objective is convex in vj with those remaining vkðk 6¼ jÞ and
U fixed. On this account, we can solve this problem via the
alternative update rule which is widely used in the optimiz-
ing community.
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2.3.1 Updating U

We first show solving Uwith V fixed. Since all uj’s are asso-
ciated with X, they can be jointly calculated via a multi-task
framework. Taking the derivative of LðU;VÞwith respect to
U and letting it be 0, we arrive at

�X>Yþ b ~DUþ �1D1Uþ g 0
1X

>XU ¼ 0; (10)

where Y ¼ ½Y1v1 Y2v2 � � � Ycvc�, 2 ~DU is the subgradient

of Uk kG2;1
and 2D1U is that of Uk k2;1; ~D is a block diagonal

matrix with entries being 1
2 Ukk kF

Ikðk 2 ½1; K�Þ, and Ik is an

identity matrix of size equaling to the kth group;D1 is also a

diagonal matrix with diagonal entries being 1
2 uik k2 ði 2 ½1; p�Þ;

and g 01 ¼ g1 þ 1.
Then we can easily have

ðb ~Dþ �1D1 þ g 0
1X

>XÞU ¼ X>Y; (11)

and further

U ¼ ðb ~Dþ �1D1 þ g 0
1X

>XÞ�1X>Y: (12)

According to [5], this linear system in terms of U can be
efficiently solved via an iterative algorithm by alternatively
first updating ~D and D1 and then U. However, if the num-
ber of SNPs becomes larger and larger, this iterative algo-
rithm is still computationally expensive.
A Fast Implementation. The primary difficulty of theU-update
is the calculation of the covariance matrix X>X when there
are a large number of features of X. In this paper, we use an
approximation method to assure a fast implementation of

X>X viamaking use of the priori knowledge, i.e., the inherent
structure of the SNPswithin the genome. Fig. 1 is the illustra-
tion of the pairwise correlation coefficients and LD values in
r2 among a segment of SNPs at different loci from chromo-
some 19. The SNPs naturally form block structure along the
diagonal, indicating a clear pattern of intra-block high corre-
lation and inter-block low correlation. Since X is centered
and normalized, X>X is the same as the pairwise correlation
coefficients as shown in Fig. 1. This indicates that X>X holds
block diagonal structure too, and its off-block-diagonal ele-
ments are nearly zero, i.e., X>

gk
Xgt 	 0 (k 6¼ t). In a word, the

information of the covariance matrix are mainly carried by a
series of block matrices along the diagonal. Most impor-
tantly, the size of these blocks are quite small compared with
the original covariance matrix attributing to the fact that the
LD block is usually much smaller than the number of SNPs
(pk 
 p) in human genome [25].

This structure has been widely used to guide the recovery
of group relationship among SNPs via the group Lasso [26]
orG2;1-norm [5]. However, they suffer from heavy computa-
tional issues caused by the enormous SNPs, and only when
artificially assuming that X>X is an identity matrix could
alleviate this issue [6], [7], [13]. From Fig. 1, we know that the
identity assumption will inevitably lose information carried
by those blocks along the diagonal [11]. In this study, we not
only make use of this grouping information to identify rela-
tionships among SNPs, but also explore a fast and easy-to-
implementmethod to handle the computational issues.

Based on the analysis above, we propose that X>X can be

computationally simplified by a series of ðX>XÞgk (abbrevi-

ated from X>
gk
Xgk ) along the diagonal. We only omit those off-

block-diagonal elements which has little influence on the per-
formance. Fig. 2 is the illustration of the approximationwhere
the off-block-diagonal elements are replaced by zero. It is

clear that the primary information of X>X are well preserved
since we take into consideration the LD structure. Therefore,
compared with those methods using identity assumption,
our method preserves more information of the data, and
could be useful in identification of important genetic markers
[11]. Most importantly, other than those methods calculating
X>X via the brute force [11], we have a very fast implementa-
tionwhich is supported by the following theorem.

Theorem 1. If X>X is a block diagonal matrix, Eq. (11) can be
solved by

U ¼ �K
k¼1U

k ¼
U1

..

.

UK

2
664

3
775;

Uk ¼ ðb ~Dgk
þ �1D1gk

þ g 0
1ðX>XÞgkÞ

�1X>
gk
½Y1v1; . . . ;Ycvc�;

(13)

where ~Dgk
is the kth block of the diagonal matrix ~D;D1gk

is the

kth block of D1; and � denotes the operation that concatenates
matrices vertically.

Proof. Since SNPs exhibit group structures, we denote

X ¼ ð. . . ;Xgk ; . . .Þ with k being the index of the kth group.

Then the covariance matrix X>X can be represented as

Fig. 1. Illustration of the pairwise correlation coefficients and LD values
(r2 � 0:2) of SNPs from Chromosome 19 of an ADNI database. (1) The
three subfigures above show the correlation coefficients r among
SNPs with a number of 1,000, 5,000, and 13,000. (2) The three subfig-
ures below are the corresponding values of LD. All figures show that
SNPs clearly form groups and the block diagonal structure always exists
as the number of SNPs increases.

Fig. 2. Illustration of the simplified covariance matrix X>X, where Xgk and

Xgkþ1
are two LD blocks, and X>

gk
Xgk is abbreviated as ðX>XÞgk . Since the

correlation between the two blocks are very low (X>
gk
Xgkþ1

	 0 and

X>
gkþ1

Xgk 	 0), their covariance can be ignored.
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X>X ¼
. .
.

ðx>xÞgk
. .
.

2
664

3
775:

We have known that ~D and D1 are diagonal matrices,
indicating they both are diagonally separable. Then
according to Eq. (12), we have

U ¼ b

. .
.

~Dgk

. .
.

2
664

3
775

0
BB@ þ �1

. .
.

D1gk

. .
.

2
664

3
775

þ g 0
1

. .
.

X>
gk
Xgk

. .
.

2
664

3
775
1
CCA

�1
..
.

X>
gk

..

.

2
664

3
775Y

¼
..
.

ðb ~Dgk
þ �1D1gk

þ g 01ðX>XÞgkÞ
�1X>

gk
Y

..

.

2
664

3
775

¼ �K
k¼1U

k: tu
The advantages of this theorem are threefold. (1) The

time complexity of Eq. (13) is Oðnp2kKÞ compared with that

of Eq. (12) being Oðnp2Þ, where pk is the size of the kth

group, and p ¼ PK
k¼1 pk. This is a significant improvement

because that the LD block size is usually quite small, i.e.,
pk 
 p. (2) Benefiting from the computation effort reduc-
tion, the memory requirement is also saved a lot because
storing X>X is very memory expensive than storing several
ðx>xÞgk . (3) According to the proof, Eq. (13) is quite easy to
implement, demonstrating it is very promising in big imag-
ing genetic analysis. This is one of the contributions of this
study and might provide a powerful tool for genome-wide
and brain-wide bi-multivariate analysis.

2.3.2 Updating vj
Note that each vj is associated with each Yj separately. This
means that these vj’s are not closely coupled such as uj’s
and should be tackled with separately. Next we will show
how to solve vj with vkðk 6¼ jÞ and U being fixed. Based on
Eq. (9), we take the derivative with respect to vj and set it to
zero

�Y>
j Xuj þ �2D2vj þ g 0

2Y
>
j Yjvj ¼ 0; (14)

which can be rewritten as

ð�2D2 þ g 0
2Y

>
j YjÞvj ¼ Y>

j Xuj; (15)

i.e.,

vj ¼ ð�2D2 þ g 0
2Y

>
j YjÞ�1Y>

j Xuj; (16)

where D2 is a diagonal matrix with its ith entry being
1

2 vik k2 ði 2 ½1; q�Þ on the diagonal; and g 0
2 ¼ g2 þ 1. Therefore,

each vj can also be solved alternatively through an iterative

algorithm.

Now that the building blocks regarding updating U and
each individual vj are created, we present the pseudocode
in Algorithm 1.

Algorithm 1. Algorithm to Solve Eq. (9)

Require:
X 2 Rn�p, Yj 2 Rn�q, j ¼ 1; . . .; c, b, �1, �2, g1, g2

Ensure:
Canonical weights U and V.

1: Initialize U 2 Rp�c, V 2 Rq�c;
2: while not convergence do

3: Update ~Dgk
andD1gk

;

4: SolveU according to Eq. (13), and normalize uj to Xuj

�� ��2
2¼ 1;

5: UpdateD2;
6: Solve vjðj ¼ 1; . . . ; cÞ according to Eq. (16), and normalize

vj to Yjvj
�� ��2

2
¼ 1;

7: end while

2.4 Convergence Analysis

We have the following theorem for Algorithm 1.

Theorem 2. Algorithm 1 decreases the objective value of Eq. (9)
in each iteration.

Proof. In order to prove this theorem, we need two essential
conclusions: (1) Eq. (12) decreases the objective Eq. (9) in
each iteration; and (2) Eq. (16) decreases the objective
Eq. (9) in each iteration.

We first prove the conclusion (1). According to Eq. (12),
we have

Xc

j¼1

Xu
ðtþ1Þ
j � Yjv

ðtÞ
j

��� ���2
2
þ g 01TrðUðtþ1Þ>X>XUðtþ1ÞÞ

þ bTrðUðtþ1Þ> ~DUðtþ1ÞÞ þ �1TrðUðtþ1Þ>D1U
ðtþ1ÞÞ

�
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Xu
ðtÞ
j � Yjv

ðtÞ
j

��� ���2
2
þ g 01TrðUðtÞ>X>XUðtÞÞ

þ bTrðUðtÞ> ~DUðtÞÞ þ �1TrðUðtÞ>D1U
ðtÞÞ

)
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� �
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:

(17)

According to Lemma 1 in [5], Ukðtþ1Þ��� ���
F
� Ukðtþ1Þ�� ��2

F

2 UkðtÞ
�� ��

F

�

UkðtÞ
��� ���

F
� UkðtÞ

�� ��2

F

2 UkðtÞ
�� ��

F

, and uiðtþ1Þ��� ���
2
� ui

ðtþ1Þ�� ��2

2

2 ui
ðtÞ�� ��

2

� uiðtÞ
��� ���

2
� ui

ðtÞ�� ��2

2

2 ui
ðtÞ�� ��

2

.

Then applying two inequations to Eq. (17) with respect
to each group and individual feature, we have
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Xc
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(18)

which can be rewritten in matrix form as

Xc
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Xu
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j

��� ���2
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þ g1 Xuj
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Xu
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� �
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(19)

g 0
1 is replaced by g1 since Xuj

ðtþ1Þ�� ��2
2
and Xuj

ðtÞ�� ��2
2
have

been normalized to 1. Thus the objective value is decreased
in each iteration regarding updatingU.

Similarly, we have the following inequality.

Xc
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Xu
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j � Yjv
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j
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�
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þ �2 VðtÞ�� ��

2;1
:

(20)

Now based on Eqs. (19) and (20), we have LðUðtþ1Þ;
Vðtþ1ÞÞ � LðUðtþ1Þ;VðtÞÞ � LðUðtÞ;VðtÞÞ, which completes
the proof. tu
According to Eq. (9), the objective is lower bounded by 0,

and thus iteratively decreasing the objective value will con-
verge to a local optimum. The proposed algorithm runs
very fast owning to (1) its closed-form solution for each
update; and (2) the divide-and-conquer strategy which is
supported by Theorem 1.

3 RESULTS

3.1 Benchmarks and Experimental Setup

In order to evaluate the performance of the proposed multi-
task SCCA method, we choose the closely related mSCCA
[13] and the conventional two-view SCCA as benchmark
methods. A common problem of the two-view SCCA and
mSCCA is that they suffer from heavy computational and
memory requirement issues because they cannot handle the
large covariance matrix calculation. To make the compari-
son available, based on Theorem 1, we implement the fast
two-view SCCA and the fast mSCCA. This yields the three
benchmark methods in this study, confirming another con-
tribution of this study.

All the methods contain parameters that should be fine
tuned before running experiments. We apply the nested

5-fold cross-validation in this work. Specifically, those tuning
parameters were determined in the inner loop where a group
of them generating the highest mean correlation coefficients,

i.e., CVð�;b; gÞ ¼ 1
5

P5
j¼1 CorrðX�juj;Y�jvjÞ, will be chosen

as the optimal parameters, where X�j and Y�j are the jth sub-
set of the inner testing set, and uj and vj are the canonical
weights estimated from the inner training set. Once deter-
mined, these parameters are used in the external loop to gen-
erate the final results. Before tuning parameters, we use some
heuristic strategy to reduce the computation burden since
blindly tuning them by grid search is computational inten-
sive. For all methods, g1 and g2 are used to address the scaling
issue when calculating the correlation coefficient. On this
account, fixing the denominator to be 1 or other integers will
just affect themagnitude ofU andV, and the relative relation-
ship among each element remains the same. For example,

suppose u1;1 ¼ 5, u1;2 ¼ 1 and Xu1k k22¼ 20 ( u1k k22¼ 20 for

two-view SCCA and mSCCA), tuning Xu1k k22¼ 1 will lead to

u1;2 ¼ 0:25 and u1;2 ¼ 0:05; while tuning Xu1k k22¼ 10will lead

to u1;1 ¼ 2:5 and u1;2 ¼ 0:5. This will not affect the feature
selection as u1;1 will always be selected with higher priority
than u1;2. Therefore, we set g1 ¼ g2 ¼ 1 in this paper. Gener-
ally, too large parameters yield over-penalized results while
too small ones yield less-penalized results. To avoid this issue,
we tune the remaining parameters �1, �2, b from a moderate
range 10i (i ¼ �5;�4; . . . ; 0; . . . ; 4; 5) via the grid search strat-
egy. Finally, in order to make the results stable, we repeat
each experiment 100 times and show the average results.
In the experiments, all methods are stopped when both

maxi u
ðtþ1Þ
i � u

ðtÞ
i

��� ��� � � ð8 uiÞ and maxj v
ðtþ1Þ
j � v

ðtÞ
j

��� ��� � � ð8 vjÞ
are satisfied, where � is the tolerable error. We empirically set
� ¼ 10�5 from experiments in this paper.

3.2 Simulation Study

This section present the comparison results on the synthetic
data. We generate four data sets with different number of
samples and features, sparsity levels and noise levels to
assure a thorough comparison. The first three data sets are
generated using the same ground truth but with different
noise strengthes. The X, Yj (j ¼ 2) and z of them are all with
n ¼ 80, p ¼ 120, q1 ¼ 100 and q2 ¼ 100. This could help
show the performance when treating with different noises.
The fourth data set is created to access the performance
under high-dimensional situation, and n ¼ 500, p ¼ 2; 000,
q1 ¼ 1; 000, q2 ¼ 1; 000 respectively. The details of each data
set are described as follows.

� Data 1: We first set u ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
60

; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
20

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
40

Þ>,

v1 ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
25

; 2; . . . ; 2|fflfflfflffl{zfflfflfflffl}
25

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
50

Þ> and v2 ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
25

;

3; . . . ; 3|fflfflfflffl{zfflfflfflffl}
25

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
50

Þ>. Then we generate a random latent

vector m of length n and normalize it to unit length.
The data matrix X is created by x‘;i � Nðm‘ui; sxÞ,
where sx ¼ 5 denotes the noise strength. Similarly,
Yj is created by ðy‘;iÞj � Nðm‘vi;j; syjÞ with sy1 ¼ 5
and sy2 ¼ 5.
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� Data 2 - Data 3: These two data sets are created with
the same ground truth as the first one with different
noises, i.e., sx ¼ sy1 ¼ sy2 ¼ 1 for Data 2 and sx ¼
sy1 ¼ sy2 ¼ 0:1 for Data 3. Therefore, the correlation

coefficients of these three data sets are different, and
that of the first data set is the smallest and that of the
third one is the highest.

� Data 4: In this data set, u ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
500

; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
100

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
400

;

2; . . . ; 2|fflfflfflffl{zfflfflfflffl}
100

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
900

Þ>, v1 ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
200

; 1:5; . . . ; 1:5|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
300

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
500

Þ>,

v2 ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
200

; 2:5; . . . ; 2:5|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
300

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
500

Þ>, and sx ¼ sy1 ¼

sy2 ¼ 0:1. The data matrix X is created by x‘;i �
Nðm‘ui; sxÞ, and Yj is generated by ðy‘;iÞj � Nðm‘vi;j;

syjÞ, with the random latent vector m of length n.
We first show the training and testing canonical correla-

tion coefficients (CCCs) in Table 1. On the first three data
sets, all methods obtain a good score when the true CC is
high, while perform poorly (overfitting) when the true CC
is excessively low due to the high percentage of noise.
MTSCCA identifies the highest training CCCs among all
three unsupervised methods, including both two-view
SCCA and mSCCA. This demonstrates that MTSCCA per-
forms better than the two single-task based SCCA methods.
In Data 4, we observe that MTSCCA obtains higher training
and testing CCCs than two-view SCCA and mSCCA in this
high-dimensional data set. This indicates that, owing to the
multi-task modeling strategy, the ability of identifying bi-
multivariate association can be improved.

In addition, the feature selection ability is also of great
interest and importance. In Fig. 3, we show the scatter of the
estimated u and vj’s. For the two-view SCCA, each uj is cal-
culated independently from each single-task SCCA, and u is
obtained by averaging uj’s. The u of MTSCCA is also
obtained by averaging uj’s associating with three SCCA
tasks. There are two estimated vj’s for all methods and we
show them separately in Fig. 4. In order to show the perfor-
mance clearly, the ground truthes are also presented in the
figure (first row). Within each subfigure, the horizontal axis
represents the indices and the vertical axis represents the
weight values. A feature with a larger canonical weight (in
absolute value) contributesmore to the bi-multivariate corre-
lation. We observe that all methods cannot find out the cor-
rect locations of signals in the first data owing to the low
signal-to-noise ratio. Combining the results of the first three
data sets together, all their performances improve from the

first data set to the third one.MTSCCAholds the best canoni-
cal profiles being consistent with the ground truthes, show-
ing its better performance in feature selection than the two-
view and multiple-view SCCA. In Data 4 where the feature
dimensionality is high, MTSCCA always identifies correct
signal locations. To make the comparison more formal,
Tables 2 and 3 show the sensitivity and specificity in terms of
canonical weights u and vj’s. Both metrics are calculated as
follows. Features are selected based on their absolute weight
values, and the larger the uij j (or vij j) is, the more relevant to
the canonical correlation. Generally, given a predefined
threshold, those features with larger-than-threshold values
are selected. However, it is hard to predefine an appropriate
threshold. To overcome this issue, in this paper, the

sensitivity is calculated via #true positive in the top K selected features
K

where K is the number of non-zero features of the ground
truth. Similarly, the specificity is calculated by

K
#selected features required to cover the ground truth. The results show that

all methods obtain good sensitivity and specificity across
these simulated data sets. MTSCCA performs slightly better
than those single-task based SCCA methods owing to the
multi-task modeling strategy. It is worth noting that in the
original implementations, both two-view SCCA and multi-
view SCCA fail since they cannot treat the large matrix calcu-
lation on the same platform as MTSCCA does. By incorporat-
ing Theorem 1, the two methods become feasible to high-
dimensional data sets. The runtime of each method is shown
in Table 4, and there is no significant difference between these
methods based on Theorem 1. This again demonstrates the
effectiveness and practice of our fast implementation strategy.

TABLE 1
Performance Comparison on Synthetic Data

Training Results Testing Results

SCCA mSCCA MTSCCA SCCA mSCCA MTSCCA

Data 1 0.28  0.06 0.40  0.10 0.99  0.00 0.25  0.14 0.16  0.10 0.23  0.16
Data 2 0.59  0.06 0.49  0.06 0.63  0.06 0.31  0.15 0.25  0.19 0.41  0.18
Data 3 0.95  0.01 0.95  0.01 0.96  0.01 0.91  0.04 0.91  0.05 0.95  0.03
Data 4 0.89  0.02 0.89  0.02 0.99  0.00 0.85  0.05 0.85  0.06 0.97  0.01

Training and testing canonical correlation coefficients (mean  std) of 5-fold cross-validation are shown for SCCA, mSCCA, and
MTSCCA. The best values are shown in boldface.

Fig. 3. Canonical weights u (mean value) estimated on synthetic data.
The first row is the ground truth, and each remaining row corresponds to
an SCCA method: (1) Two-view SCCA, (2) mSCCA (Multi-view SCCA),
and (3) MTSCCA (Multi-task SCCA). In each subfigure, the horizontal
axis represents the indices of each u, and the vertical axis represents
the estimated weight value.
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In summary, this simulation study using data sets with
diverse characteristics demonstrates that MTSCCA is effec-
tive in bi-multivariate association identification with multi-
ple data modalities. Moreover, MTSCCA identifies the best
canonical loading profiles which is consistent with the
ground truth compared to the single-task SCCA methods.
In addition, it also reveals that the group structure can not
only help prompt the identification performance, but also
help reduce the time effort in high-dimensional scenario in
multi-modal bi-multivariate association analysis.

3.3 Real Neuroimaging Genetics Study

The genotying and brain imaging data used in this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative database (adni.loni.usc.edu). One primary goal of
ADNI has been to test whether serial magnetic resonance
imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease. For
up-to-date information, see www.adni-info.org.

The neuroimaging data were from 755 non-Hispanic
Caucasian participants, including 281 AD, 292 MCI and 182

healthy control (HC). They were 18-F florbetapir PET (AV-
45) scans, fluorodeoxyglucose positron emission tomogra-
phy (FDG) scans, and structural MRI scans which were
downloaded from the ADNI database (adni.loni.usc.edu).
Details of this data set are exhibited in Table 5. The multi-
modality imaging data were aligned to each participant’s
same visit. The structural MRI scans were processed with
voxel-based morphometry (VBM) via SPM [27]. Generally,
all scans had been aligned to a T1-weighted template
image, segmented into gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) maps, normalized to
the standard Montreal Neurological Institute (MNI) space

Fig. 4. Canonical weights V (mean value) estimated on synthetic data. The first row is the ground truth, and each remaining row corresponds to an
SCCA method. (1) Two-view SCCA. (2) mSCCA (Multi-view SCCA). (3) MTSCCA (Multi-task SCCA). In each subfigure, the horizontal axis
represents the indices of vj ðj ¼ 1; 2Þ, and the vertical axis represents the estimated weight value.

TABLE 2
Comparison of the Sensitivity of Canonical Weights on Synthetic Data

u v1 v2

Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4

SCCA 0.25 0.45 1.00 1.00 0.88 1.00 0.85 0.99 0.44 0.56 0.84 1.00
mSCCA 0.20 0.45 1.00 1.00 0.60 0.84 0.96 1.00 0.76 0.92 0.96 1.00
MTSCCA 0.05 0.55 1.00 1.00 0.32 0.56 1.00 1.00 0.32 0.64 1.00 1.00

TABLE 3
Comparison of the Specificity of Canonical Weights on Synthetic Data

u v1 v2

Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4

SCCA 0.85 0.89 1.00 1.00 0.77 0.83 0.96 1.00 0.81 0.85 0.95 1.00
mSCCA 0.84 0.89 1.00 1.00 0.87 0.95 0.99 1.00 0.92 0.97 0.99 1.00
MTSCCA 0.81 0.91 1.00 1.00 0.77 0.85 1.00 1.00 0.77 0.88 1.00 1.00

TABLE 4
Runtime Comparison of Synthetic Data

Runtime

SCCA mSCCA MTSCCA

Data 1 0.19  0.24 0.19  0.24 0.19  0.23
Data 2 0.15  0.16 0.16  0.18 0.18  0.22
Data 3 0.11  0.18 0.17  0.18 0.13  0.15
Data 4 1.49  5.58 2.59  5.52 2.59  5.86
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as 2 � 2 � 2 mm3 voxels, and had been smoothed with an
8 mm FWHM kernel. The FDG-PET and AV45-PET scans
were also registered into the same MNI space by SPM. We
then subsampled the whole brain and generated 116 regions
of interest (ROI) level measurements based on the MarsBaR
automated anatomical labeling (AAL) atlas. They were the
mean gray matter densities for structural MRI, amyloid val-
ues for AV45 scans and glucose utilization for FDG scans.
Using the regression weights derived from the healthy con-
trol participants, these imaging measures were pre-adjusted
to remove the effects of the baseline age, gender, education,
and handedness.

The genotyping data of the same population were down-
loaded from the LONI website. They were genotyped using
the Human 610-Quad or OmniExpress Array (Illumina,
Inc., San Diego, CA, USA), and preprocessed using the stan-
dard quality control (QC) and imputation steps. The QC cri-
teria for the SNP data include (1) call rate check per subject
and per SNP marker, (2) gender check, (3) sibling pair iden-
tification, (4) the Hardy-Weinberg equilibrium test, (5)
marker removal by the minor allele frequency and (6) popu-
lation stratification. In second pre-processing step, follow-
ing the quality-controlled SNPs, those missing genotypes
were imputed using the MaCH software [28]. Among all
human chromosomes, the chromosome 19 sequence con-
tains the most number of genes, in which the gene density
is more than double the genome-wide average [29], [30]. In
addition, this chromosome also includes the well-known
AD risk genes such as APOE, TOMM40 and ABCA7. There-
fore, a bi-multivariate association study between this chro-
mosome and whole brain imaging markers could be of
great interest, and has potential to yield interesting AD risk
factors. As a result, all the SNPs from chromosome 19 were
included, i.e., 152,787 SNPs were involved in this study.

Among these enormous SNPs, most of themmight be irrele-
vant to AD, while only a few of them could be relevant via
influencing the intermediate brain imaging measurements.
The aim is to identify this small subset of SNPs in chromo-
some 19 correlating to imaging markers and AD.

3.4 Improved Bi-Multivariate Association

In this subsection we evaluate the proposed method in iden-
tifying the bi-multivariate associations between one genetic
data and three sets of imaging phenotypes. Thus there will
be three pairs of associations, and we denote them as SNPs-
AV45, SNPs-FDG and SNPs-VBM for the sake of descrip-
tion. For the three SCCA tasks, the proposed MTSCCA
learns them together and generate a canonical weights
matrix U for SNPs and one canonical weight vector vj for
AV45, FDG and VBM. We then calculate three canonical
correlation coefficients in terms of SNPs-AV45, SNPs-FDG
and SNPs-VBM separately. The two-view SCCA naturally
yields three CCCs for these three tasks. Though the mSCCA
only learns one canonical weight vector for SNPs, we use
it three times to generate three CCCs with respect to the
three tasks.

Fig. 5 shows the CCCs of the SNPs data with each imag-
ing QTs data, where CCCs estimated from SNPs-AV45,
SNPs-FDG and SNPs-VBM are separately shown. In this
figure, both the training CCCs and testing CCCs, as well as
their standard deviations (SD) are presented. By changing
the number of selected features (10; 20; . . . ; 100 in this work)
for both SNPs and imaging QTs, the CCCs can be generated
and then these curves are plotted. It is clear that the pro-
posed MTSCCA obtains higher CCCs on both training and
testing sets across all imaging modalities except for training
results of SNPs-VBM. After investigation, this could be that
the two-view SCCA runs into overfitting since it holds high
training CCCs and quite low CCCs simultaneously. We also
observe that mSCCA always obtains the lowest CCCs on
both training and testing sets across three tasks in this data.
This is very interesting as it seems to violate the truth
because more data (three different imaging QTs here) ought
to provide more information. The reason might attribute to
its modelling strategy. Demanding one set of features
(SNPs) being associated with three sets of features (imaging
QTs) simultaneously could be overstrict and thus harm the
performance. This is also the reason that two-SCCA gener-
ally holds better CCCs than mSCCA.

In addition, we calculate the p-values between our
method and two competing methods and show them in
Table 6, where the ’-’ in parenthesis indicates that MTSCCA
fails. The p-values are all reach the significance level which
means that our method is significantly better than both com-
peting methods. These results in terms of CCCs indicate

TABLE 5
Participant Characteristics

HC MCI AD

Num 182 292 281
Gender(M/F, %) 47.16/52.84 54.52/45.48 47.37/52.63
Handedness(R/L, %) 90.91/9.09 87.35/12.65 91.50/8.50
Age (meanstd) 72.97  6.00 71.81  7.62 72.38  7.31
Education (meanstd) 16.52  2.58 15.97  2.78 16.14  2.78

Fig. 5. Performance comparison: The mean and standard deviation (SD)
of the canonical correlation coefficients (CCCs) obtained from 5-fold
cross-validation trials are plotted, where each error bar indicates
0:5SD. The subtitle SNPs-AV45 means the CCCs are calculated
between the SNPs data and the AV45-PET data.

TABLE 6
The p-Values of t-Tests for CCCs Comparison between

MTSCCA and Two-View SCCA and mCCA

The ’-’ in parenthesis means that MTSCCA loses on this trial.
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that the proposed joint bi-multivariate learning method
indeed has better association identification capability than
those SCCA methods, including both two-view and multi-
ple-view ones. Table 7 shows the runtime in seconds of each
method, where that of the two-view SCCA are summation
of three two-view tasks. The runtime results indicate that all
three methods run fast on this large data set. This attributes
to the grouping strategy used in the implementation accord-
ing to Theorem 1. In contrast, both competing methods are
incapacitated in their original implementations since they
cannot manipulate a big matrix with hundreds of thousands
of features included. This again assures our contribution to
accelerate both our method and conventional methods via
making use of the grouping structures.

3.5 Genetic Marker Selection

Apart from the CCCs, the selected features in terms of SNPs
are a major concern. This can help reveal those SNPs being
highly related to imaging QTs and AD status at the same
time. We show the top ten selected SNPs according to the
canonical weight values of each individual method. In order
to make the selection results stable, we average the canonical
weight matrix into a vector and then choose the top ten SNPs
based on their absolute values for MTSCCA. The top ten
markers of two-view SCCAmethod are calculated via averag-
ing the three separate canonical weights. Those ofmSCCAare
obtained by its canonical weight vector. The results of
selected SNPs are shown in Table 8. Owning to the jointly
learning paradigm, the proposed MTSCCA yields a surpris-
ingly meaningful result with respect to selected features
(SNPs). As expected, the notable AD risk markers rs429358
gains the highest weight value, and all of the remaining nine
SNPs of MTSCCA, i.e., rs56131196 (APOC1), rs12721051
(APOC1), rs4420638 (APOC1), rs111789331 (4.5 kb ofAPOC1),
rs66626994 (5.6 kb of APOC1), rs146275714 (PVRL2),
rs41289512, rs147711004 (71 kb of APOE) and rs10119
(TOMM40), have been reported to show increasing risk of

AD in previous studies [31], [32], [33]. This indicates the abil-
ity ofMTSCCA in identifyingmeaningful SNPs frommassive
genetic markers. The two-view SCCA also identifies the
rs429358 as its first important SNPs, and five other AD related
SNPs (rs10414043, rs147711004, rs7256200, rs73052335 and
rs66626994) have been reported previously. But it identifies
four SNPs that are not reported by now and thus further
investigation should be taken place. The mSCCA performs
unacceptably in this comparison since it does not find out
rs429358.Moreover, except for themarker rs623264, all identi-
fied SNPs of mSCCA have not been reported yet in the cur-
rent stage. In summary, the results in terms of selected SNPs
show that MTSCCA performs better than both competing
methods. This reveals that MTSCCA could be a suitable tool
and very helpful in discovering meaningful genetic markers
in a very large scenario.

3.6 Brain Imaging Marker Selection

Besides the genetic markers, as a bi-multivariate method,
MTSCCA also selects features from the multiple imaging
QTs. Fig. 6 presents the canonical weights of every method
on each imaging modality (AV45, FDG and VBM) across
the five trials. We observe that all those imaging markers
with nonzero coefficients have been shown to be associated
with the progression of AD. To make it clear, we show the
top ten selected QTs of each imaging modal data of
MTSCCA in Table 9. There are five markers (the right angu-
lar gyrus, the left posterior cingulum cortex, the left hippo-
campus, the left olfactory cortex and the vermis 8) reported
in all three modalities owning to the joint feature selection
via the ‘2;1-norm regularization. Most importantly, these

TABLE 7
Runtime Comparison with the meanSD

being Presented

Runtime (seconds)

Two-view SCCA mSCCA MTSCCA

342  0.37 114  0.30 361  0.93

TABLE 8
Top Ten SNPs Selected by Integrated Canonical Weights

Two-view SCCA mSCCA MTSCCA

rs429358 rs138339429 rs429358
rs10414043 rs141300647 rs56131196
rs147711004 rs58501143 rs12721051
rs146291812 rs17363184 rs4420638
rs623264 rs623264 rs111789331
rs7256200 rs11881833 rs66626994
rs186235601 rs7253576 rs146275714
rs73052335 rs1749316 rs41289512
rs66626994 rs139402102 rs147711004
rs415966 rs4605289 rs10119

Fig. 6. Comparison of canonical weights in terms of each imaging modal-
ity across five trials. Each row corresponds to a SCCA method. (1) Two-
view SCCA. (2) mSCCA. (3) MTSCCA. Within each panel, there are
three rows corresponding to three type of imaging QTs, i.e., AV45, FDG,
and VBM.

TABLE 9
Top Ten Imaging QTs Selected by Canonical Weights

of Each Imaging Modality of MTSCCA

AV45 FDG VBM

Frontal_Med_Orb_Left Cingulum_Post_Left Postcentral_Left

Angular_Right Angular_Right Precentral_Left

Cingulum_Post_Left Hippocampus_Left Angular_Right

Hippocampus_Left Vermis_8 Cingulum_Post_Left

Olfactory_Left Angular_Left Vermis_8

Frontal_Mid_Right Amygdala_Left Thalamus_Right

Cingulum_Ant_Left Olfactory_Left Rolandic_Oper_Right

Rolandic_Oper_Right Temporal_Mid_Right Frontal_Med_Orb_Left

Temporal_Mid_Right Precentral_Left Hippocampus_Left

Vermis_8 Temporal_Mid_Left Olfactory_Left
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markers are have all been documented to be related to AD
in the literature independently. For example, the significant
reduction of glucose metabolism in the right angular gyrus
has been observed in aging-associated cognitive decline
(AACD) patients [34]. The declined metabolism in the left
posterior cingulum cortex is an early sign of Alzheimer’s
disease [35]. This brain tract is also connected to the hippo-
campus which is a notable sign of AD and MCI [36], [37].
The remaining left olfactory cortex [38] and vermis 8 [39],
have been separately validated to be a reflection of AD or
MCI. These results indicate that MTSCCA could find out
meaningful imaging QTs markers that are associated with
the status of dementia. The mSCCA also identifies a few of
AD related markers such as the hippocampus. The results
of the two-view method are rambling and thus lack of bio-
logical meanings. To summarize, the proposed MTSCCA
can not only obtain higher CCCs than conventional SCCA
methods, but also yield better canonical weights for both
SNPs and imaging QTs. The top ten selected SNPs and
imaging QTs are highly correlated with each other, as well
as AD status, which demonstrates that MTSCCA could be
very promising in brain imaging genetics.

4 CONCLUSION

High-throughput genotyping technique and neuroimaging
techniques provide us a large amount of biomedical data,
and finding out their bi-multivariate associations is impor-
tant. In this paper, we have proposed a novel multi-task
sparse canonical correlation analysis framework and apply
it to imaging genetics with multi-modal brain imaging QTs.
Different from existing SCCA, MTSCCA can incorporate
multiple sets of imaging modalities data into a single inte-
grative model. Furthermore, MTSCCA is a multiple bi-mul-
tivariate method and thus has better modeling capability
than both SCCA and MTL regression. A fast optimization
algorithm is proposed which avoids calculating the large
covariance and its inverse. The algorithm is guaranteed to
converge to a local optimum, and runs very fast with hun-
dreds of thousands of features involved.

We compared MTSCCA with the conventional two-view
and multi-view SCCA on an ADNI cohort. Our method
obtained better performance than the benchmarks with
higher correlation coefficients and clearer canonical weight
patterns. MTSCCA succeeds in identifying a small set of
SNPs from enormous genetic markers from the 19th chro-
mosome. It is worth noting that all top ten selected SNPs of
MTSCCA are AD risk factors. In addition, the canonical
weight patterns of imaging QTs were also of great success.
The identified imaging QTs were highly correlated to AD or
MCI. These promising results demonstrated that the pro-
posed multi-task SCCA framework could be a powerful
tool in big brain imaging genetics. Since a GWAS based bi-
multivariate analysis is of much concern, in the future
work, we will keep looking into the merit of MTSCCA and
use it to genemo-wide brain-wide imaging analysis.
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